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Soret coefficient for liquid argon-krypton mixtures via equilibrium and nonequilibrium molecular
dynamics: A comparison with experiments
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The Soret and the other transport coefficients, characterizing the heat and mass transport in binary mixtures,
have been obtained by equilibrium and nonequilibrium molecular dynamics~EMD and NEMD, respectively!.
Two state points of the argon-krypton mixture are considered, for which experimental values of the Soret
coefficient are available. To attempt a comparison between simulations and experiments the common enthalpy-
diffusion-free expression for the heat flux has been chosen. The comparison of the simulations with the
experiments shows a remarkable agreement, for all the several utilized EMD and NEMD techniques~dynami-
cal and stationary!. The techniques, used over 0.3ms of total simulation time span, are slow convergent but
have comparable performances.
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I. INTRODUCTION

In a binary isotropic mixture thermal and diffusive tran
port properties are described by four phenomenological
efficients in the absence of chemical reactions and exte
forces, for other effects do not couple with thermal pheno
ena ~Curie’s principle!. Two of them govern direct
transport—i.e., particle flow induced by a concentration g
dient and heat flow caused by a thermal gradient—as in o
component fluids. The other two are connected to the c
coupling of diffusive and thermal flows. These two coef
cients are equal in the linear regime@as stated by the so
called Onsager’s reciprocity relations~ORR!#—i.e., for weak
thermal and chemical potential gradients. In this work we
particularly concerned with these cross coefficients, wh
are generally difficult to obtain with a good accuracy, sin
they are rather small compared to the direct ones.

The phenomenological coefficients for a Lennard-Jo
Ar-Kr liquid mixture, equimolar and close to the triple poin
were first calculated by MacGowan and Evans~ME! @1#, and
then confirmed by Paolini and Ciccotti~PC! @2#. In Ref. @1#,
ME, equilibrium and nonequilibrium molecular dynamic
~respectively, EMD and NEMD! were performed using an
approximate microscopic expression for the heat flux a
looking at the stationary response of the system. In Ref.@2#,
PC, the same methods were applied, but looking at the
namical ~transient-time! response of the system, with th
help, for small applied fields, of a noise reduction techniq
~substraction technique!. It was also pointed out that the ap
proximation for the heat flux corresponds to assume as i
the mixture, i.e., the interaction between is identical to t
within components@3#. In a subsequent paper, Vogelsa
et al. @4# used both the NEMD data of PC and ME for com
paring with longer EMD simulations that made use of t
rigorous expression for the microscopic heat flux. More s
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emonte 26, I-00187 Roma, Italy.
1063-651X/2002/66~3!/031201~15!/$20.00 66 0312
o-
al
-

-
e-
ss

e
h
e

s

d

y-

e

al
t

-

cifically, they reconstructed the exact expression of the h
flux by plugging in the rigourous partial enthalpies of th
mixture instead of the approximate instantaneous value
ME. As a result of this study, the approximate and corr
heat flux expressions gave consistent values for the phen
enological coefficients.

The four phenomenological coefficients can be used
conjunction with thermodynamic quantities such as par
enthalpies and chemical potential derivatives, to calcu
thermal conductivity, Soret, thermal diffusion, and mutu
diffusion coefficients. These are the transport coefficie
usually measured in experiments. In this work, the theor
cal relation between the directly simulated quantities and
experimental coefficients has been reviewed.

We performed EMD and NEMD~dynamical and station-
ary! calculations of the Soret and the other thermal diffus
coefficients for two Ar-Kr state points. These mixtures we
experimentally studied by Longre´e et al. @5,6#, and are rather
far away from the triple point studied by ME and PC. Th
above ideal mixture approximation has been used.

The plan of the paper is as follows. In Sec. II we spec
the formalism we use. We give the relations between p
nomenological and experimental transport coefficients
introduce the general formalism for the response theory
lowed by a description of several measurement techniq
In Sec. III we present the model chosen for the mixtures a
the states studied. In Sec. IV, we present and discuss
simulation results for the transport coefficients. We comp
the validity and efficiency of the different techniques a
study the ORR out of the linear regime. Finally, conclusio
are drawn in Sec. V.

II. FORMALISM

A. Phenomenological equations

The macroscopic relations describing the transport
matter and heat in a two-component isotropic mixture can
expressed, in the framework of irreversible thermodynam
as @7#

i-
©2002 The American Physical Society01-1



tic
o

o
os

n
T

nt

re
f-

a-
e

th

f

i

l
rr
ic
e

e

t

n-
can

-

we
rtial
ex-

e

PERRONACE, CICCOTTI, LEROY, FUCHS, AND ROUSSEAU PHYSICAL REVIEW E66, 031201 ~2002!
JE52L̃EE

“T

T2
2 (

b51

2

L̃Eb“S mb

T D , ~1a!

Ja52L̃aE

“T

T2
2 (

b51

2

L̃ab“S mb

T D , ~1b!

whereJa is the mass flux of speciesa relative to the center-
of-mass frame~for a binary mixture we haveJ252J1), JE
is the energy flow excluding convection,mb is the chemical
potential of speciesb, T is the temperature, and theL̃ab’s
are the phenomenological coefficients of energy and par
transport in a mixture. Since we have used, for the therm
dynamic forces, the expressions appearing in the entr
production term, the Onsager equality holds for the cr
coefficients, i.e.,L̃Eb5L̃bE @7#. Equations~1! are written us-
ing the Curie’s principle, i.e., generalized forces of differe
tensorial character do not couple in isotropic mixtures.
calculate the experimentally defined transport coefficie
we have to compare the phenomenological Eqs.~1! with the
constitutive equations used by experimentalists@8#,

JQ52l“T2rw1m11
w TDT

D
“w1 , ~2a!

J152rw1w2DT“T2rD“w1 , ~2b!

with l the thermal conductivity,D the mutual diffusion,DT

the thermal diffusion, andDT
D the Dufour coefficients; the

quantity wa is the mass fraction of speciesa and m11
w the

derivative of the chemical potential of species 1 with
spects tow1. The mass fluxJ1 is measured in the center-o
mass reference.

In Eqs.~2! we have theheat fluxJQ , while in Eqs.~1! we
have theenergy fluxJE . We therefore have to cast the rel
tions ~1! in a form suitable for the comparison, that is w
have to pass fromJE to JQ . Several definitions ofJQ have
been proposed@9# since a clear physical definition of it in
mixtures is lacking. Therefore, a certain arbitrariness in
choice remains. One of the most used is@1,2,4#

JQ5JE2(
a

ha

ma
Ja , ~3!

with ma the mass of a particle of componenta, ha the
partial enthalpy of component a, that is ha
5(]H/]Na)P,T,$Nb% with $Nb% the set of particle numbers o

all the components but thea. In the present paper weassume
JE to be the correct choice for the heat flux measured
experiments.

Inserting Eq.~3! into Eqs. ~1!, expressing the chemica
potential gradients as functions of concentrations, and ca
ing out the algebra, we end up with the phenomenolog
equations which include the gradients measured in exp
ments,

JQ52LQQ

“T

T2
2LQ1

m11
w

w2T
“w1 , ~4a!
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J152L1Q

“T

T2
2L11

m11
w

w2T
“w1 . ~4b!

We can now compare Eqs.~4! to the Eqs.~2! and make
the identification@7#

l5
LQQ

T2
, ~5a!

D5
L11m11

w

rw2T
, ~5b!

DT
D5

LQ1

rw1w2T2
, DT5

L1Q

rw1w2T2
, ~5c!

DT

D
[ST5

LQ1

L11m11
w Tw1

. ~5d!

The coefficientsLab’s can be written as functions of th
L̃ab’s and theha’s. Hence, the transport coefficients~5! can
be expressed in terms of theL̃ab’s. This could be of some
interest for the simulation, sinceJQ does not have a fully
microscopic expression~it is not a full phase function since i
contains thermodynamic quantities!, while JE does. The only
exception is for mixtures with equal intermolecular pote
tials for each component, i.e., isotopic. In this case one
give a microscopic expression for the heat flux~see the fol-
lowing section! which is found valid also for the more gen
eral case of ideal mixtures@4#, i.e., with mixtures with neg-
ligible excess quantities. Therefore, in the ideal case,
need not calculate, by independent simulations, the pa
enthalpies. Moreover, in this case, we have an analytical
pression form11

w @7#,

m11
w 5

RT

w1@M12w1~M12M2!#
, ~6!

with R the gas constant. Thus, by using Eq.~6! and calculat-
ing theLab’s directly in a simulation of an ideal mixture, w
obtain the transport coefficients~5!.

B. Microscopic fluxes

We consider a system ofN particles,N1 of massm1 and
N2 of massm2, with coordinatesr ia and momentapia ,
where a51,2 runs over different species,i 51,2, . . . ,Na
over all particles belonging to speciesa. Let r ia, j b be the
relative position of the particlesia and j b, eia the total
energy of particleia, andFia, j b the force onia due to j b,

r ia, j b5r ia2r j b , r ia, j b5ur ia2r j bu, ~7a!

eia5
upiau2

2ma
1

1

2 (
b

(
j Pb, j bÞ ia

f ia, j b , ~7b!
1-2
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Fia, j b52
]f~r ia, j b!

]r ia
, ~7c!

wheref(r ia, j b)5f ia, j b is the pair potential and the summ
tion ( i

a is taken over the particlesi belonging to speciesa.
The microscopic diffusive current of speciesa, measured

in the frame moving with the streaming velocityu ~comov-
ing frame!, is

Ja5
1

V (
i

a

maFpia

ma
2uG5

Nama

V
~ua2u!, ~8!

whereua is the mean velocity of speciesa,

ua5
1

Na
(

i

a pia

ma
, ~9!

and

u5

(
a

Namaua

(
a

Nama

~10!

is the instantaneous barycentric velocity. Let us define
‘‘interdiffusive’’ current JD , which we will use in our equa-
tions of motion, as

JD5
1

V Fx2(
i

1 pi1

m1
2x1(

j

2 pj 2

m2
G5F x2

m1
1

x1

m2
GJ1 , ~11!

wherexa5Na /N is the number concentration of speciesa,
and we made use of(kJk50, easily verified from Eq.~8!.

The microscopic Irwing-Kirkwood expression forJE is
@10#

VJE5(
a

(
i

a

ẽiaS pia

ma
2uD

1
1

2 (
a

(
b

(
i Pa

(
j Pb

r ia, j bFia, j bFpia

ma
2uG , ~12!

where

ẽia5
ma

2 Upia

ma
2uU2

1
1

2 (
b

(
j Pb, j bÞ ia

f ia, j b ~13!

is the total energy of particleia in the comoving frame.

1. Ideal mixtures

As stated in Sec. II A, there cannot be a fully microsco
expression for the heat fluxJQ . However, for mixtures with
equal intermolecular potentials and in general for other id
mixtures, in the thermodynamic limit, partial enthalpies a
therefore the heat flux can be written as phase-space f
tions @1,2#. The heat flux for ideal mixtures is
03120
n

al

c-

VJQ
ideal5(

a
(

i

a

eia8 Fpia

ma
2uaG

1
1

2 (
a

(
b

(
i Pa

(
j Pb

r ia, j bFia, j bFpia

ma
2uaG ,

~14!

whereeia8 is the total energy of particleia measured in the
comoving frame of the speciesa @obtained from Eq.~13! by
replacing upia /ma2uu with upia /ma2uau#. The difference
betweenJQ

ideal and JE , once neglected within the linear re
gime the terms quadratic in (ua2u) and taken the thermo
dynamic limit, can be written as in Eq.~3!, with the partial
enthalpy of componenta replaced by@2#

h̃a5
^ea81V~Pa! i i &

maNa
, ~15!

where the quantity (Pa) i i is the trace of the ‘‘partial’’ pres-
sure tensor. Within this approximation, we can use the d
nition ~5! to calculate the transport coefficients.

Clearly,JQ
ideal is different fromJQ given in Eq.~3!. Evans

and Cummings@11# derived an expression for the heat flu
defined in Eq.~3!. Sarman and Evans@12,13# compared phe-
nomenological coefficients computed with both fluxes a
concluded that the ideal approximation is valid, at least
argon-krypton mixtures. However, we did not make use
the EC heat flux because the link between the set of
corresponding phenomenological coefficients and the exp
mentally measured cross-coefficients still involves therm
dynamic data. Therefore, in practice~or at least without any
independent data! it is not possible to get the Soret and D
four coefficients from the EC algorithm to compare wi
experiments.

C. Non-Hamiltonian equations and response theory

In Eq. ~5!, the Soret and the other transport coefficien
are written as functions of the phenomenological coefficie
Lab’s. We reported, in the preceding section, some mic
scopic expressions for energy, heat, and mass fluxes, us
employed in simulations. The connection between th
fluxes and the phenomenological coefficients can be m
using the Green-Kubo relations@14#

Lab5
V

3kB
E

0

`

dŝ Ja~s!•Jb~0!&eq, ~16!

with Ja a heat or mass flux andkB the Boltzmann’s constant
Using linear response theory we can relate a nonequ

rium flux to the correlation functions and therefore to t
Lab’s. The non-Hamiltonian NEMD equations of motion
can be written as@1,15#

ṙ ia5
pia

ma
1CiaFe~ t !, ~17a!

ṗia5Fia1DiaFe~ t !, ~17b!
1-3
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whereFe(t) is the imposed perturbation,Cia5Cia(G) and
Dia5Dia(G) are suitable tensors that are phase-space fu
tions and which describe the coupling of the perturbation
the system. If Eqs.~17! preserve the phase-space inco
pressibility, we apply the response theory in its standard fo
@16# and get the response in a phase-space functionB as

^B& t5bE
0

t

^B~ t2s!O~0!&eq•Fe~s!ds1O~Fe
2!, ~18!

where the time dependence has to be taken with the
turned off andb51/kBT; Furthermore, we made the hypoth
esis that^B&eq50; O is the variable that couples with th
imposed perturbation, defined as

O5(
a

(
i

a Fpia

ma
•Dia2Fia•CiaG . ~19!

To impose a diffusive perturbationFD(t), we choose
Cia[0 for every particleia, and Dia[Aa with A15x2 ,
A252x1. To impose a thermal perturbationFQ(t), we
choose againCia[0 andDia to be

Dia5Sia2
1

Na
(

k

a

Ska , ~20!

with (I is the unit tensor!

Sia5eia8 I1
1

2 (
b

(
j Pb

Fia, j br ia, j b . ~21!

Using the defined tensors for diffusive and thermal p
turbations, we obtainOD5VJD and OQ5VJQ . With these
definitions we can relate each phenomenological coeffic
to a response of the system undergoing one of the spec
perturbations, as explicitly shown in Sec. II D.

D. Techniques for response measurement

In this section we specify the form of the external pert
bation,Fe(t), we apply to our system, and discuss the diff
ent techniques for the response measurement and the l
coefficients determination. We also add a discussion on s
a determination using the usual Green-Kubo relations.

In past NEMD applications, several choices forFe(t) can
be found, including sinusoidal excitations. To determine
matrix of thermal transport coefficients, two temporal fun
tions are suitable,

Fe~ t !5~0,0,F̃e!d~ t !, e5D,Q, ~22a!

Fe~ t !5~0,0,F̄e!u~ t !, e5D,Q, ~22b!

which have been chosen along thez axis without loss of
generality. For each of them we get a response of the t
~18!. We do not knowa priori the explicit analytical form of
the response. However, it can be written as a Taylor exp
sion @17# in the fieldFe . Therefore, in order to perform th
zero-field extrapolation, we adjust a polynom to our respo
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values, as already done in the literature@18#. We use the
chi-squared of the fit as a criterium to select the most app
priate polynomial order. We divide the response by the ex
tation field, rescale it of an opportune factor@see, for ex-
ample, Eqs.~24!–~26!#, and take a Taylor developmen
getting the ‘normalized’ responseRab(t),

Rab~ t !5Lab~ t !1bab~ t !Fe
21cab~ t !Fe

41dab~ t !Fe
6

1O~Fe
8! a,b51,Q, ~23!

where Lab(t), bab(t),cab(t),dab(t) are general functions
of time, Fe can be eitherF̃e or F̄e , and e5D,Q for b
51,Q, respectively. TheFe→0 limit of the right-hand side
of the previous expression is the termLab(t), which can be
an equilibrium correlation function or its integral. Indee
using ad-like excitation we get inLab(t) a correlation func-
tion, while with au-like one, we get its integral. Howeve
still for d-like external fields, we can integrate the respon
over time, thus getting the same general expansion inFe .
This procedure, though simply derivable from respon
theory, has not yet been exploited in the literature.

For an interval of ‘‘small’’ fields we can consider as if w
were in the limitFe→0 @2,1#; this interval thus defines the
‘‘linear’’ region. In this region, we have the following re
sponses to impulse excitations:

^J̃az&Q,t5bF̃QV^ J̃az~ t !J̃Qz~0!&eq, ~24a!

^J̃az&D,t5bF̃DF x2

m1
1

x1

m2
GV^ J̃az~ t !J̃1z~0!&eq, a51,Q,

~24b!

whose time integral we compare with the usual Green-Ku
~16! relations, to obtain

L̃aQ,t

T
5

1

F̃Q
E

0

t

dŝ J̃az&Q,s , ~25a!

L̃a1,t

T
5

1

F̃DS x2

m1
1

x1

m2
D E0

t

dŝ J̃az&D,s . ~25b!

a51,Q.

Still looking at the linear response, from the above s
excitations, we have

L̃aQ,t

T
5 lim

F̄Q→0

^J̃az&Q,t

F̄Q

, ~26a!

L̃a1,t

T
5 lim

F̄D→0

^J̃az&D,t

F̄DS x2

m1
1

x1

m2
D , a51,Q. ~26b!

The expressions~25! and ~26!, give, when taken witht
large enough, the linear coefficientsL̃ab’s. The limit
1-4
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Fe→0 is usually performed either by choosing a very sm
value of this field, or by extrapolating to zero field the r
sponse values.

There are two conceptually different ways to use expr
sions~25! and ~26!. In one of them@19,20#, one starts from
the well-known Liouville equation

] f

]t
5 iL~ t ! f ~G;t !, ~27!

whereG is the phase-space vector andf the phase-space dis
tribution function. The solution of Eq.~27! is

f ~G;t !5U1~ t ! f ~G;0!, ~28!

with f (G;0) chosen to be the equilibrium phase-space dis
bution function. Formula~28! defines theU1(t) time propa-

FIG. 1. Correlation functionC11(t) for the system 1.~a! The
plot of the whole function;~b! the tail.
03120
ll

-

i-

gator, adjoint of the time-evolution propagatorU(t) acting
on the phase-space variables. The out-of-equilibrium aver
of a flux can therefore be written as

J~ t ![^Jh&neq5E dGf ~G;t !Jh~G![„Jh ,U1~ t ! f 0…

5„U~ t !Jh , f 0…, ~29!

whereJh(G) is the phase-space function corresponding
the flux Jh . Equation~29! is fundamental to approach non
equilibrium statistical mechanics. It says that for systems
tially at equilibrium, nonequilibrium averages of an obser
able can be obtained as averages of the observable, evo
in time under the full~perturbed! dynamics, over the equi
librium ~initial-time! ensemble. The method based on E

FIG. 2. Correlation functionCQQ(t) for the system 1.~a! The
plot of the whole function;~b! the tail.
TABLE I. Conditions for the experiments~expt.! and simulations~sim., N5108) for the two thermody-
namical points studied. The molar fraction is denoted withxAr,Kr and mass fraction withwAr,Kr ; r is the
mass density of the mixture,P the pressure, andT the temperature.

System P (atm) T (K) NAr xAr wAr r (g/cm3) r s r c

1, expt. ,3 95.262.4 0.6790 0.5020
1 sim. 1 95.260.1 73 0.6759 0.4985 1.8119 2.35 L/2
2 expt. ,3 93.062.4 0.7840 0.6340
2 sim. 1 93.060.2 85 0.7870 0.6379 1.6734 2.35 L/2
1-5
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~29! is generally calleddynamical approachand can use any
type of time dependence of the external perturbation.

In contrast to this, thestationary approach@1,21# uses
time averages over the stationary state, attained when
chooses au-like perturbation in conjunction with a thermo
stat which removes the dissipated heat. We stress that
approach only allows the calculation of the phenomenolo
cal coefficient, without giving any information on the dy
namical~transient-time! behavior.

In the case ofdynamical approach, the subtraction tech
nique @19# for noise reduction has been already proposed

FIG. 3. Tail of the correlationC11(t) for the system 1, with two
different fits.

FIG. 4. Cross correlations for the system 1, ensembleNVT. ~a!
the full plot, ~b! the plot in a reduced window with averages a
statistical errors.
03120
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order to have a significant signal-to-noise ratio. However
is known that this technique is suitable only at short tim
For correlation function showing enough long time memo
the noise becomes as large as the natural fluctuation of
measured current. Hence, the ratio of the measured curre
the corresponding excitation field, for large enough tim
diverges for small values of the field. We will see that this
the situation encountered in our case.

III. MODELS

We have studied two mixtures of argon-krypton atom
with massesm1539.944 andm2583.80 a.u. TheN5108
particles system is enclosed in a cubic box of sideL and
volume V5L3. The model for interactions is a Lennard
Jones potential,

fLJ
ab~r !54eabF S sab

r D 12

2S sab

r D 6G ,
with parameters e115119.8 kB , e225167.0 kB , s11
53.405 Å, s2253.633 Å, and with cross parameters d
fined by the Lorentz-Berthelot rules

s125
s111s22

2
,

FIG. 5. Integrals of the cross correlation functions for the s
tem 1.~a! L1Q(t) andLQ1(t) are plotted with their statistical errors
~b! L1Q(t), LQ1(t), as well asL1(t)5@L1Q(t)1LQ1(t)#/2 with its
statistical error.
1-6
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e125Ae11e22.

Units are s11 for length, e11 for energy, and t
5(ms11

2 /e11)
1/2 5 2.156 ps for time. All the quantities wil

be quoted in such units, unless explicitly mentioned.
avoid discontinuities in the integration of equations of m
tion, we modify the model so that the new potential functi
fab gives pair forcesuFia, j bu which go to zero in a continu

FIG. 6. The quantitiesL25uL1Q2LQ1u/2 and Ld5(dL1Q

1dLQ1)/A2 are plotted against the block numbernb , for two dif-
ferent times:~a! at t50.72t, where the differenceL2 is the most
important,~b! at t52.32t, where one finds the minimal differenc
between the two cross coefficients~see Fig. 5!.

FIG. 7. The quantity L1(t)5@L1Q(t)1LQ1(t)#/2 plotted
against the block number.
03120
o
-

ous way at the edge of the box. This is obtained by match
a spline with a cubic line, such as to satisfy the condition

]2fab~r s!

]r 2
5

]2fLJ
ab~r s!

]r 2
, ~30a!

FIG. 8. The two cross coefficientsL1Q and LQ1 for system 1.
The vertical line shows the time window used to get the conver
time integrals in Ref.@2#.

FIG. 9. Direct responses to ad-like excitation of~a! heat and~b!
mass, for different perturbation strengths.
1-7
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]fab~r s!

]r
5

]fLJ
ab~r s!

]r
, ~30b!

]2fab~r c!

]r 2
50, ~30c!

]fab~r c!

]r
50, ~30d!

wherer s is the radius where the Lennard-Jones potentia
cut, andr c is the one where the spline ends. The poten
fab(r ) is the integral overr of the pair force]fab(r )/]r
with the condition thatfab(r )50 for r>r c . Our boundary
conditions are periodic in all directions. We integrated t
equations of motion~17! using the velocity Verlet algorithm
with a slight modification at the beginning of each NEM
trajectory, due to the impulsive perturbation employ
@19,22#. The time step is wheneverh55 fs, unless other-
wise declared. We performed calculations both in NVE a
in NVT ensembles. For the latter we used the Nose´-Hoover
thermostat whose inertia parameterQ50.5 kJ mol21 ps2 has
been chosen following the procedure used in Ref.@23#. That
is, the value has been adjusted by trial and error, perform
a number of dynamical NEMD runs and choosing the larg
value consistent with a temperature control effective over

FIG. 10. Cross responses to ad-like excitation of~a! heat and
~b! mass, for different perturbation strengths.
03120
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st
e

short time span of the observed stationary part of the
namical response of the system.

We tested our code by performing simulations on the s
tem of PC, which is very close to that of ME. We foun
results that agree well within the statistical error bars. F
thermore, it is worth noting that this work presents resu
obtained by two independently developed codes~a sequential
and a parallel one, running respectively on SGI or HP, a
Cray T3E! which give the same results at any time of corr

FIG. 11. ResponsesR1Q and RQ1 to a step function excitation
for several perturbation strengths.

FIG. 12. Two reponsesRQQ for a step function excitation with
strength out of the linear region. The two curves correspond to
average over 20 initial configurations. For one of the two curv
we used 10 initial configurations and another 10 were created
velocity inversion of the former ones.
1-8
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TABLE II. Results for the GK simulations, systems 1 and 2. The total simulation time for each po
60 ns.

State Ens. LQQ 102L1Q 102LQ1 102L1 102L11

1 NVT 3.3760.09 20.7660.48 21.07360.48 20.9260.30 1.00960.027
1 NVE 3.5060.25 21.3760.50 21.4060.50 21.3960.31 1.02760.060
2 NVT 3.3760.07 20.7660.42 20.9060.54 20.8360.30 0.98060.016
2 NVE 3.3360.08 20.8860.45 20.8060.45 20.8460.34 0.96060.03
I
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u

u
e

e
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d
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and
lation functions, up to the last significant digit.
The experimental conditions are those of Refs.@5,6#, and are
reported in Table I together with those of the simulations.
the experimental work cited, the pressure is not reported.
got the pressure value from J. C. Legros by private comm
nication. We performed NPT simulations to prepare o
simulation system. In Table I, we also give the average d
sity of the NPT simulations.

IV. RESULTS OF THE COMPUTATIONS

We report here the results of NEMD simulations. Oth
methods, e.g., boundary-driven NEMD@21,24,25#, were not
possible in our case, since the liquid-vapor coexistence
gion for argon and krypton is too close to the studied st
points, and therefore the mixture would undergo a ph
transition when submitted to important temperature gra
ents.

FIG. 13. Dynamical direct responses to a step function exc
tion as a function of the imposed field. System 1, constant den
and temperature.
03120
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e
e
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As stated in Sec. II D, we can divide the NEMD tec
niques into dynamical and stationary ones, that is into te
niques that measure the transient responses and techn
that measure the stationary response. We report, in the
lowing, results for both classes of techniques.

A. Dynamical techniques

1. Green-Kubo

We performed Green-Kubo calculations over a continuo
trajectory, divided intonb5200 blocks, each of 300 ps. Thi
corresponds to a total accumulation time of 60 ns; this len
is around four times longer than that of Ref.@4# ~16 ns! for a
similar calculation. For a block, sayb, we calculate the time
correlation functions, theCab

b (t)’s, and their time integrals
theLab

b (t)’s. We then calculate averages and standard er

-
ty

FIG. 14. Dynamical cross responses to a step function excita
as a function of the imposed field. System 1, constant density
temperature.
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TABLE III. Phenomenological coefficients obtained by NEMD simulations, systems 1 and 2.

Syst. Method LQQ 102L1Q 102LQ1 102L11

1 NEMD d 3.3060.07 20.9660.50 21.3060.80 1.0260.01
1 NEMD u dyn. 3.3660.10 20.9960.19 21.061.0 0.9960.06
1 NEMD u stat 3.3460.07 21.0060.17 20.9960.62 1.0160.04
2 NEMD u stat 3.3160.07 20.8260.18 20.8960.58 0.9760.03
n

-
a

n

l-
e

f
-
y
an
een

ous
,
ir

een
In

tio
a

tion
and
on the whole set of block values, hence the correlation fu
tions Cab(t)’s and their time integralsLab(t)’s, as

A~ t !5
1

nb
(
b51

nb

A b~ t ! A5Cab ,Lab . ~31!

If one supposesthat the blocks give statistically indepen
dent values for the correlation functions, then the stand
error is given by the expression

dA~ t !5
1

Anb
H 1

nb21 (
b51

nb

@A b~ t !2A~ t !#2J 1/2

. ~32!

In Figs. 1 and 2 we report the direct correlation functio
C11(t) andCQQ(t) for the system 1. We note thatC11(t) has
not yet decayed up to 2t. For the cross correlation the ca
culation of the decay time is obviously more difficult. W

FIG. 15. Stationary direct responses to a step function excita
as a function of the imposed field. System 1, constant density
temperature.
03120
c-

rd

s

therefore decided to use one ofC11(t) as the decay time o
all correlations. The functionC11(t) does not show any evi
dence of at23/2 long time tail behavior, as it is clear b
looking at Fig. 3. From this figure we also see that we c
consider the correlation function as decayed at times betw
2.2 and 2.5t; we take the decay timetc'2.3t. This value is
more than two times larger than the one used in previ
works @2,4# on Ar-Kr mixture. As for the cross correlations
they are reported in Fig. 4, while in Fig. 5 we report the
integrals, together with the mean integral

L1~ t ![@L1Q~ t !1LQ1~ t !#/2.

We stress that there is a significative difference betw
the two cross correlation functions even at short times.

n
nd

FIG. 16. Stationary cross responses to a step function excita
as a function of the imposed field. System 1, constant density
temperature.
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TABLE IV. Simulation results, as averaged over all obtained values~with different methods!; systems 1
and 2.

Syst. LQQ 102L1Q 102LQ1 102L1 102L11

1 3.37460.034 21.01660.099 21.15360.083 21.084 0.083 1.011260.0063
2 3.34060.030 20.83560.128 0.970160.0142
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particular, we notice that the difference between the t
cross correlations is larger than the sum of the two corr
tions’ errors divided byA2,

uL1Q2LQ1u.
dL1Q1dLQ1

A2
,

as one can see from Fig. 6 for two different times. We rec
that the two cross correlation functions must be equal.
therefore conclude that we do not estimate well the varian
that is the blocks are not statistically independent. To in
grate the previous analysis, we plottedL1 against the block
number, on Fig. 7. We see that the functionL1 has a slow
convergence rate, andL1Q , LQ1 are still a little different
after 200 blocks. Altogether these results indicate that
blocks are not yet long enough to be completely independ
while their number should be further increased to have
convergence. In any event, even so, we can consider to
accumulated enough statistics to get reliable significant
sults.

In Table II the results for the phenomenological coe
cients are reported, for both NVT and NVE calculations a
for both the studied state points. We stress that NVT a
NVE simulations are in very good agreement with ea
other. Besides the results in Table II, this is seen compa
the first parts of the correlation functions, which are n
noisy, with each other.

2. Dynamical, impulsive NEMD

We performed NEMD simulations using the subtracti
technique and the impulsive excitation, for the system Ar-
1. In the linear regime, the responses are proportiona
correlation functions as in Eqs.~24!, whose integrals are re
lated to phenomenological coefficients through Eq.~25b!.
We found that the correlation functions converge only
long times, i.e., at around 4–5 ps, as in the GK case. I
known@26# that, at these times, the exponential decorrelat
between the equilibrium and nonequilibrium trajector
makes the subtraction technique unable to yield the zero
03120
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limit with reasonable accuracy. This is shown, in our case

Fig. 8, where the calculatedL1Q(t) and LQ1(t) for F̃Q

50.01 andF̃D50.2, respectively, are plotted. One clear
sees the exponential divergence at long times. The ver
line defines the time window used to get the converged t
integrals in Ref.@2#. For such times, with the performe
statistics, the substraction technique still gives good ac
racy, but in our case the convergence has not yet been
tained. We conclude that, in our case, the subtraction te
nique cannot be directly useful for such calculation
Nevertheless, for short times, it gives a clear confirmation
the Onsager reciprocal relations in the linear regime.

Out of the linear regime, we expect to have an apprecia
improvement of the signal-to-noise ratio. We perform
simulations for several field values out of the linear regio
i.e., F̃QP@0.1,0.6# and F̃DP@1,6#. We accumulated data
over a total simulating time of 12 ns for each value of t
fields, therefore the total time for the whole set of points
72 ns. We have then integrated the response, and determ
the plateau value of the integrals.

The dynamical technique allows us to see the modifi
tion of the correlation function’s form with the value of th
imposed field. We report in the Appendix the study of t
change of this form as function of the imposed field streng
We study also in the Appendix the validity of the ORR out
the linear region. This is seen as well in the converged in
grals, as in the remainder of this section.

All the responses converge between 2.0 and 2.5t. We took
a weighted average of the integrals’ values within this tim
window, and plotted them against the imposed fie
strengths, as in Figs. 9 and 10. A polynomial, weighted
~see Sec. II D! has been performed, and the zero field limit
the responses has been determined. The obtained chi-sq
values correspond to a probability~to obtain such fits! of
around 98% for all the fits. The results are in Table III. Th
are consistent with the Green-Kubo determinations. The
rors on the cross coefficients are, however, large, in sli
contrast to the previous situation. This means that the po
are not very well fitted by the imposed polynomial functio
rrors
TABLE V. Experimental and simulation results for the mixture Ar-Kr, systems 1 and 2. The e
correspond to two times the standard deviation. The total length of the simulation isDt.

Syst. Method Dt 10l 109D 1011DT 102ST

~ns! ~W/K m! (m2/s) (m2/K s) ~1/K!

1 Sim. 335 1.03160.022 1.30760.018 2.9360.50 2.2460.40
1 Expt. 2.7860.66
2 Sim. 120 1.06760.018 1.33760.019 2.7760.54 2.0760.69
2 Expt. 2.1060.32
1-11
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PERRONACE, CICCOTTI, LEROY, FUCHS, AND ROUSSEAU PHYSICAL REVIEW E66, 031201 ~2002!
The Onsager reciprocity relations are verified in the lin
regime, but not out of this regime. This is clearly indicat
by looking at the progression of the two responses aga
the field~Fig. 10!: they have opposite trends. Note, howev
that, in the nonlinear region, the responses have not
longer a direct physical meaning.

FIG. 17. Comparison between experiments@5# and simulation
~this work!, for two states of the Ar-Kr mixture. The values of th
simulation are calculated over all the results obtained by EMD
NEMD and reported with two standard deviations error. They ar
the same argon mass fraction as the experiments, but have
shifted in the plot for better readability.

FIG. 18. Direct response to ad-like mass perturbation for dif-
ferent field strengths.~a! Short time response;~b! tail response.
03120
r

st
,
ny

3. Dynamical, step-function NEMD

We performed simulations with the step-function exci
tion ~see Sec. II D! for different strengths, in and out of th
linear region. In the linear region, simulations proved ho
ever to give too noisy signals, so that it was impossible
extract the converged values. This is not surprising, since
are continuously disturbing the system, therefore this te
nique is even more noisy than thed-like one. As for the
simulations out of the linear region, we did not use the s
traction technique, because here the response is much
important than the signal at equilibrium, therefore, this te
nique would increase the statistical error (s'sneq1seq)
without improving the response. However, to get a nea
signal, we used the technique proposed by Evans@16# which
consists in the creation, for each equilibrium starting co
figuration, of a configuration with opposite velocities; w
averaged on the entire set of responses obtained starting
these two set of configurations. This gives a significat
reduction of the statistical noise, around a factor 2, as sho
in Fig. 12.

Despite this noise reduction technique, the cross repon
at low ~nonlinear! fields prove still too much noisy to extrac
a useful information. In Fig. 11 we plotted the cross repon
for three different values of the external field, each com
from a simulation of around 12 ns. The figure shows that i
not possible to distinguish the convergence of the curv
though the field values are already out of the linear regi
Moreover, for the heat reponse to a mass excitation, we h

d
t
en

FIG. 19. Direct response to ad-like heat perturbation for differ-
ent field strengths.~a! Short time response;~b! tail response.
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much more noise than with the other cross signal. This is
surprising, since the heat observable contains several di
ent variables as forces, velocities, positions and therefore
dergoes larger fluctuations.

However, if one increases the intensity of the excitati
one begins to find neater responses. We went up toFQ51
andFD510. It is possible to go besides these values, but
implementation of the Nose´-Hoover thermostat would ask
too small time step. On Figs. 13 and 14 we report the p
gression of the reponses as nonlinear functions of the app
field. In Table III there are the results of the zero field e
trapolation of the integrated reponses, i.e., the phenom
logical coefficients. They are in good agreement with ea
other and with the determinations from other methods.

B. Stationary technique

We performed simulations withu-like excitation for sev-
eral field values, at the edge or out of the linear region, i
F̄QP@0.1,1# and F̄DP@1,10#. We accumulated data over
total simulation time of 12 ns for each value of the fie
using the time steph55 fs, apart for the strongest fields, fo
which it has been reduced to 2 fs. In Figs. 15 and 16
report the responses as functions of the imposed field
gether with their best fits. For all the fits we had chi-squa
values that correspond to 99% of fit probability.

From the fits we see that the Onsager’s reciprocal r
tions are verified in the linear region, while they are not o

FIG. 20. Cross response to ad-like heat perturbation for differ-
ent field strengths.~a! Short time response;~b! tail response.
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of this region, as it was the case for dynamicald-like NEMD
technique.

The phenomenological coefficients’ determination is
good agreement with GK, as seen comparing values in Ta
III with those of Table II.

C. Comparison of simulation results with experiments

In order to make a better comparison between the m
ods, we have performed an average over all the simula
values, calculating the variance by combining the vario
variances. This is correct for the system 1, because we h
many different values for the coefficients. For system 2 mu
less individual responses were studied, thus we reported
the statistics on direct coefficients, which we expect corre
and for the coefficientsL1 as calculated from all the avail
able cross coefficents’ values. The results are reported
Table IV. Looking at the results obtained with the differe
techniques in the preceding sections, we can draw the
lowing conclusions.

~i! The results from GK and the different NEMD tech
niques are in good agreement with each other. The di
phenomenological coefficients of system 1 agree within 1
while the more noisy cross coefficients agree within 10%,
given by standard deviations in Table IV. This agreem
refers to a total simulation time of around 0.3ms. For sys-
tem 2, we have larger values of the variance, i.e., 15% for
cross coefficientL1 . This is due to the fact that we average
on fewer values and on a shorter simulation time, 0.19ms.

FIG. 21. Cross response to ad-like mass perturbation for differ-
ent field strengths.~a! Short time response;~b! tail response.
1-13
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~ii ! Both Green-Kubo and NEMD cross coefficients det
minations are found to have slower convergence than
pected when looking at previous works on the subj
@1,2,4#; they have, however, comparable performances.
deed, for some NEMD determinations we have a sign
cantly smaller error than for GK, but NEMD simulation
have been carried on for a longer time. Moreover, one ha
take into account the time needed to create the initial~equi-
librium! configurations.

~iii ! The Onsager reciprocity relations are found valid
the linear region. Out of this region, they are no more ve
fied, as one can see from the dynamical and station
NEMD responses~see Figs. 10, 14, and 16!.

We showed that convergence is slow for all techniqu
For comparison with the experiments, we therefore used
averaged values given in Table IV. We calculated the tra
port coefficientsl,D,DT ,ST in the mass reference frame, a
indicated in Table V.

In Fig. 17 the coefficientsST calculated by simulation
show a very good agreement with experimental data.

V. CONCLUSION

In this paper we performed equilibrium and nonequil
rium calculations in order to compute the Soret coeffici
for two state points of the argon-krypton mixture, expe
mentally measured. As statistical errors in equilibrium G
simulations are independent of the system size@26#, a very
small system~108 particles! was chosen in order to compa
the efficiency of GK and NEMD calculations.

The matrix of phenomenological coefficients has been
tained by various techniques which differ in the use ofd- and
u-like excitations in the linear and nonlinear regime, assu
ing the ideal mixture approximation for the heat flux. W
found that the linear dynamical NEMD~performed through
subtraction technique! cannot be used in our case, and
general when the response does not decay within;1 ps,
because of the exponential divergence of trajectories. N
linear dynamical and stationary NEMD, for which we us
u-like andd-like perturbations, give reliable results in goo
agreement with each other. However, in spite of the lo
total simulation time for each technique~60–100 ns!, impor-
tant statistical errors are found~from 17% to 50%!, in con-
trast with previous works on the subject. We had also
occasion to study the validity of Onsager reciprocal relatio
out of the linear regime. We found that the cross respon
are not any longer equal in this regime.

We confirmed our NEMD results by comparison wi
Green-Kubo calculations, that we carried on during a traj
tory of 60 ns. As a result of this long simulation, we found
very slow convergence for both cross coefficients, which
hence determined with modest accuracy~around 30%!.
Green-Kubo calculations give performances comparable
the NEMD ones.

A comparison between simulations and experiments
been attempted. The common enthalpy-diffusion-free exp
sion for the heat flux has been chosen. The comparison o
03120
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simulations with experiments for the Soret coefficient is ve
good and this suggests that the heat flux choice is corr
This is also confirmed by recent work on pentane-dec
mixture @27#. This comparison has been realized averag
on all our simulation data~that corresponds to aroun
0.3 ms of a continuous run! to obtain the more reliable es
timation of the transport coefficients.
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APPENDIX

In this appendix we study the dynamical responses to
impulsive excitation described in Sec. IV A 2, as a functi
of the imposed field strength.

In Fig. 18 we see the form of the direct response to
mass excitation. The initial value of this response does
change with the field, while the progression in time und
goes important modifications. This means that in the exp
sion ~23!,

Rab~ t !5Lab~ t !1bab~ t !Fe
21cab~ t !Fe

41dab~ t !Fe
6,

a,b51,Q

we haveb11(0)50,c11(0)50,d11(0)50. This is not the case
of the direct response to a heat excitation, shown in Fig.
The change arises from the very beginning and alread
short times (;0.3t) one sees a negative peak appearing.
interpret this as the response of the system to a very str
d-like excitation, i.e., to a perturbation that induces a ‘‘larg
displacement of particles and therefore a transient, indu
negative heat flux. This is not the case forR11, since the
interdiffusive flux is just controled by the perturbation, an
the thermostat easily removes the produced heat.

As for the cross responses, on Fig. 20 one can see tha
to the heat excitation. Again in this case, where we meas
a mass flux, we note that in the above expansion,b1Q(t)
50,c1Q(t)50,d1Q(t)50 at very short times. For low fields
we have one first negative peak, a second one is positive
then the correlation function goes to zero from positive v
ues. As the field increases, we note that the first nega
peak becomes less deep and that a third negative peak a
On Fig. 21, we reported the cross response to a mass ex
tion. The situation is opposed with respect to the other cr
response, for the first negative peak, that is the peak beco
deeper as the imposed field increases. We can conclude
the two cross responses, out of the linear region, are v
different and hence the Onsager reciprocity relations
these responses are not valid.
1-14
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