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Soret coefficient for liquid argon-krypton mixtures via equilibrium and nonequilibrium molecular
dynamics: A comparison with experiments
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The Soret and the other transport coefficients, characterizing the heat and mass transport in binary mixtures,
have been obtained by equilibrium and nonequilibrium molecular dynaiEl® and NEMD, respectively
Two state points of the argon-krypton mixture are considered, for which experimental values of the Soret
coefficient are available. To attempt a comparison between simulations and experiments the common enthalpy-
diffusion-free expression for the heat flux has been chosen. The comparison of the simulations with the
experiments shows a remarkable agreement, for all the several utilized EMD and NEMD teclidiqaesi-
cal and stationany The techniques, used over 0/3s of total simulation time span, are slow convergent but
have comparable performances.
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[. INTRODUCTION cifically, they reconstructed the exact expression of the heat
flux by plugging in the rigourous partial enthalpies of the
In a binary isotropic mixture thermal and diffusive trans- mixture instead of the approximate instantaneous values of
port properties are described by four phenomenological coME. As a result of this study, the approximate and correct
efficients in the absence of chemical reactions and externdleat flux expressions gave consistent values for the phenom-
forces, for other effects do not couple with thermal phenom£nological coefficients.
ena (Curie’s principle. Two of them govern direct The f(_)ur phenomenological lcoefficie_n_ts can be used,_in
transport—i.e., particle flow induced by a concentration grafonjunction with thermodynamic quantities such as partial
dient and heat flow caused by a thermal gradient—as in oné&nthalpies and ghemlcal potential der_lvatl'ves, to calculate
component fluids. The other two are connected to the cros ermal conductivity, Soret, thermal diffusion, and mutual

coupln of ifusive and thermal flows. These two coefi- O 5" <Oieenis These e e vansper codicerts
cients are equal in the linear reginfas stated by the so- Y P : '

called Onsager’s reciprocity relatiot®@RR)]—i.e.. for weak cal relation between the directly simulated quantities and the
th | dgh . Ip i yt' | aradients. | ih'” K experimental coefficients has been reviewed.
ermaland chemical potential gradients. In this WOrk we are o performed EMD and NEMDRdynamical and station-

particularly con_cgrned with t.hesg cross coefficients, W_h'dhry) calculations of the Soret and the other thermal diffusion
are generally difficult to obtain with a good accuracy, sinCecqefficients for two Ar-Kr state points. These mixtures were
they are rather small compared to the direct ones. experimentally studied by Longeet al.[5,6], and are rather
The phenomenological coefficients for a Lennard-Jonegy, away from the triple point studied by ME and PC. The
Ar-Kr liquid mixture, equimolar and close to the triple point, gpove ideal mixture approximation has been used.
were first calculated by MacGowan and Ev4NEE) [1], and The plan of the paper is as follows. In Sec. Il we specify
then confirmed by Paolini and Ciccot®C) [2]. In Ref.[1],  the formalism we use. We give the relations between phe-
ME, equilibrium and nonequilibrium molecular dynamics nomenological and experimental transport coefficients and
(respectively, EMD and NEMPwere performed using an introduce the general formalism for the response theory fol-
approximate microscopic expression for the heat flux andowed by a description of several measurement techniques.
looking at the stationary response of the system. In R8f.  In Sec. lll we present the model chosen for the mixtures and
PC, the same methods were applied, but looking at the dythe states studied. In Sec. IV, we present and discuss the
namical (transient-timg¢ response of the system, with the simulation results for the transport coefficients. We compare
help, for small applied fields, of a noise reduction techniquethe validity and efficiency of the different technigues and
(substraction techniqlelt was also pointed out that the ap- study the ORR out of the linear regime. Finally, conclusions
proximation for the heat flux corresponds to assume as ideare drawn in Sec. V.
the mixture, i.e., the interaction between is identical to that
within componentg3]. In a subsequent paper, Vogelsang
et al.[4] used both the NEMD data of PC and ME for com- Il. FORMALISM
paring with longer EMD simulations that made use of the , ,
rigorous expression for the microscopic heat flux. More spe- A. Phenomenological equations
The macroscopic relations describing the transport of
matter and heat in a two-component isotropic mixture can be
*Present address: Ing. Barzano’ & Zanardo S.p.A., via Pi-expressed, in the framework of irreversible thermodynamics,
emonte 26, 1-00187 Roma, ltaly. as[7]
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2 w
‘JE:_LEE?_BZl LEﬁv(?>, (13 le_l—lQ?_anVWl- (4b)
~ VT 22: ~ (Mﬁ) We can now compare Eq#4) to the Egs.(2) and make
‘]a:_La s I—aV—, 1b i ifi i
ez~ A LasV T (1b)  the identification 7]

wherel, is the mass flux of species relative to the center- N = Log (52
of-mass framgfor a binary mixture we havd,=—J,), Je T2’
is the energy flow excluding convection, is the chemical
potential of specieg, T is the temperature, and the,z's _ Loy
are the phenomenological coefficients of energy and particle = oW (5b)
transport in a mixture. Since we have used, for the thermo- P2
dynamic forces, the expressions appearing in the entropy
production term; the~Onsager equality holds for the cross DD Loz D.— Lig (50
coefficients, i.e.Lgz=L ge [7]. Equationg1) are written us- T PW W, T2 T PW W, T2

ing the Curie’s principle, i.e., generalized forces of different
tensorial character do not couple in isotropic mixtures. To L
calculate the experimentally defined transport coefficients, —TEST=¢. (5d)
we have to compare the phenomenological Efjswith the D Lyap] Twy

constitutive equations used by experimentaliSis

W)

The coefficientd. ,5's can be written as functions of the
Eaﬁ’s and theh,’s. Hence, the transport coefficien can

be expressed in terms of tﬁ%ﬁ’s. This could be of some
interest for the simulation, sincé&, does not have a fully
microscopic expressiofit is not a full phase function since it
contains thermodynamic quantitjesvhile Jz does. The only
exception is for mixtures with equal intermolecular poten-
tials for each component, i.e., isotopic. In this case one can
give a microscopic expression for the heat flsee the fol-
lowing section which is found valid also for the more gen-

Jg=—AVT—pwiufTDPVwy, (2a)
J1=—leW2DTVT—pDVW1, (2b)

with A the thermal conductivityD the mutual diffusionD+
the thermal diffusion, and? the Dufour coefficients; the
quantity w,, is the mass fraction of species and u}; the
derivative of the chemical potential of species 1 with re-
spects tow;. The mass fluxJ; is measured in the center-of-

mass reference. o eral case of ideal mixturdd], i.e., with mixtures with neg-
In Egs.(2) we have théneat fluxJ, while in Egs.(1) we  jigiple excess quantities. Therefore, in the ideal case, we
have theenergy fluxJg . We therefore have to cast the rela- neeq not calculate, by independent simulations, the partial

tions (1) in a form suitable for the comparison, that is We gnthalpies. Moreover, in this case, we have an analytical ex-
have to pass frondg to Jo. Several definitions odg have pression foru?, [7]

been proposef9] since a clear physical definition of it in
mixtures is lacking. Therefore, a certain arbitrariness in the

. . ) RT
choice remains. One of the most used 2,4 w_ , 6
Hn wWi[M1—wi(M;—My)] ©
‘JQZ‘JE_Z m—aJaa (3 with Rthe gas constant. Thus, by using E6). and calculat-

a o

ing theL ,z's directly in a simulation of an ideal mixture, we

with m, the mass of a particle of componeat h, the ©Ptain the transport coefficients).

partial enthalpy of component«, that is h,
= (aH/aNa)p,T,{NB} with {N4} the set of particle numbers of B. Microscopic fluxes

all the components but the. In the present paper wassume We consider a system o particles,N; of massm, and
Je to be the correct choice for the heat flux measured irN, of massm,, with coordinatesr;, and momentap;,,
experiments. where «=1,2 runs over different species=1,2,... N,

Inserting Eq.(3) into Egs. (1), expressing the chemical over all particles belonging to species Let r;, ;; be the
potential gradients as functions of concentrations, and carryelative position of the particlese and j3, e, the total

ing out the algebra, we end up with the phenomenologicaénergy of particld e, andF;,, ;4 the force oni e due toj s,
equations which include the gradients measured in experi-

ments, Faip=Via—Tigr Tiajp=ITia—Tjgl: (7a)

vT P11 IPial®
Jo=~Leoz ~Lary T VWi (4a) €= m,

1
+ z 2 . E . d’ia,j,Bv (7b)
B ieB, iBFia
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IP(Tiaip) : o«
F‘“'Jﬁ:_(;r—l.m’ (79 vaideal— E > ela Pi }
la i
whereg(ri, js) = biq jp IS the pair potential and the summa- 1 Pia
tion = is taken over the particlesbelonging to species. + 2 ; % gﬂ J;B Mia,jgFia, iBlm. " Yals
The microscopic diffusive current of species measured
in the frame moving with the streaming velocity(comov- (14)
ing frame, is whereeg/, is the total energy of particlea measured in the
1 b N.m comoving frame of the species[obtained from Eq(13) by
Jo=y > m, ﬁ_u}z ‘{/ *(u,—u), (8) replacmg|(|10|a|/m —u| with |pia/ma—ua|]_. The difference
[ a betweenJ;°® and Jg, once neglected within the linear re-

gime the terms quadratic iru{—u) and taken the thermo-
dynamic limit, can be written as in E¢3), with the partial
enthalpy of component replaced by[2]

whereu,, is the mean velocity of species,

Lol P ©
YN, 4 m, = (et V(P,)i)
“  mN, ' a9
and

where the quantityR,);; is the trace of the “partial” pres-

E N m.u sure tensor. Within this approximation, we can use the defi-
= e nition (5) to calculate the transport coefficients.
u=——"— (10) Clearly,J9°* is different fromJg given in Eq.(3). Evans
2 N,m, and Cummlngill] derived an expression for the heat flux

defined in Eq(3). Sarman and Evari42,13 compared phe-
nomenological coefficients computed with both fluxes and
Loncluded that the ideal approximation is valid, at least for
argon-krypton mixtures. However, we did not make use of
the EC heat flux because the link between the set of the
corresponding phenomenological coefficients and the experi-
ﬁ} J, (1 mentally measured cross-coefficients still involves thermo-
dynamic data. Therefore, in practi¢er at least without any
independent dajat is not possible to get the Soret and Du-
wherex,=N,/N is the number concentration of species  four coefficients from the EC algorithm to compare with

is the instantaneous barycentric velocity. Let us define a
“interdiffusive” current Jp, which we will use in our equa-
tions of motion, as

1

X2
Jp= v

2
Pir < Piz| | X2
Em x12 =

1 L m

and we made use a&f,J,=0, easily verified from Eq(8). experiments.
The microscopic Irwing-Kirkwood expression fdg is
[10]

C. Non-Hamiltonian equations and response theory

are written as functions of the phenomenological coefficients
L.g's. We reported, in the preceding section, some micro-
scopic expressions for energy, heat, and mass fluxes, usually

, (120 employed in simulations. The connection between these
fluxes and the phenomenological coefficients can be made
using the Green-Kubo relatiof$4]

(p ) In Eq. (5), the Soret and the other transport coefficients
la

V=2 X8
Pia
3 S E T o] o

where
) W des(J (9)- T5(0)) (16)
~ ma ia 1 aB= AL a : eq
€ia= Pl _ ts 2 2 b (13 P ks lo re
@ B jeBiBFia
with 7, a heat or mass flux arg; the Boltzmann’s constant.
is the total energy of particlex in the comoving frame. Using linear response theory we can relate a nonequilib-
rium flux to the correlation functions and therefore to the
1. Ideal mixtures L.g's. The non-Hamiltonian NEMD equations of motions

As stated in Sec. Il A, there cannot be a fully microscopicCan be written a§1,19]
expression for the heat flul, . However, for mixtures with
equal intermolecular potentials and in general for other ideal Fia =h +CiFelb), (179
mixtures, in the thermodynamic limit, partial enthalpies and
therefore the heat flux can be written as phase-space func- _
tions[1,2]. The heat flux for ideal mixtures is Pio=Fiot DiFe(t), (17b
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where F(t) is the imposed perturbatioG;,=C;,(I') and values, as already done in the literatyde8]. We use the
D;,=D;(I") are suitable tensors that are phase-space funehi-squared of the fit as a criterium to select the most appro-
tions and which describe the coupling of the perturbation tgriate polynomial order. We divide the response by the exci-
the system. If Eqs(17) preserve the phase-space incom-tation field, rescale it of an opportune facfmee, for ex-
pressibility, we apply the response theory in its standard fornample, Eqgs.(24)—(26)], and take a Taylor development,
[16] and get the response in a phase-space fun@&ias getting the ‘normalized’ respong®, 4(t),

0 +O(F}) a,8=1Q, (23

where the time dependence has to be taken with the ﬁel%hereﬁ
turned off andB8= 1/kgT; Furthermore, we made the hypoth-
esis that(B),=0; O is the variable that couples with the
imposed perturbation, defined as

«p(1), bopg(t),cop(t),d,4(t) are general functions
of time, F, can be eithefr, or F,, ande=D,Q for B
=1,Q, respectively. Thé&=,—0 limit of the right-hand side
of the previous expression is the terfyz(t), which can be
Pia an equilibrium correlation function or its integral. Indeed,
o Di,—Fie Ciol- (19 using as-like excitation we get inC,4(t) a correlation func-

@ tion, while with a 6-like one, we get its integral. However,
still for 6-like external fields, we can integrate the response
over time, thus getting the same general expansioRn
This procedure, though simply derivable from response
theory, has not yet been exploited in the literature.

For an interval of “small” fields we can consider as if we
1 were in the limitF.— 0 [2,1]; this interval thus defines the
Diyw=Sis— — > Sku, (200  ‘linear” region. In this region, we have the following re-

N, K sponses to impulse excitations:

To impose a diffusive perturbatiofy(t), we choose
C;,=0 for every particlei«, and D;,=A, with A;=X,,
A,=—X;. To impose a thermal perturbatioR(t), we
choose agair; ,=0 andD;, to be

with (I is the unit tensor <jaz>Q,t=ﬁ'EQV<jaz(t)-JQz(0)>eq, (243
1
=@/ — Cor ~ ~ | X2 X ~ ~
Sia=elalt 3 20 2 Fiaisfias ) (uoi=BFo i+ o VO 0)eq, @a=1Q,

24h)
Using the defined tensors for diffusive and thermal per- (24b)

turbations, we obtailOp=VJy, and Oq=VJy. With these whose time integral we compare with the usual Green-Kubo
definitions we can relate each phenomenological coefficienl6) relations, to obtain
to a response of the system undergoing one of the specified

perturbations, as explicitly shown in Sec. Il D. EaQ,t 1t
- :ﬁ—fods(JaZ)Q,S, (253
D. Techniques for response measurement Q
In this section we specify the form of the external pertur- [al‘t 1 t
bation,F4(t), we apply to our system, and discuss the differ- T % X deS<JaZ>D,s- (25b
ent techniques for the response measurement and the linear D(- —)
coefficients determination. We also add a discussion on such my My

a determination using the usual Green-Kubo relations.

In past NEMD applications, several choices F(t) can a=1Q.
be found, including sinusoidal excitations. To determine the
matrix of thermal transport coefficients, two temporal func-
tions are suitable,

Still looking at the linear response, from the above step
excitations, we have

FD=(00F)8(1), e=DQ, (223 Feat_ iy Dedat, (263
= F
_ FQHO Q
T ~
which have been chosen along theaxis without loss of all _ lim (Jaz)o, . a=10. (26b)
generality. For each of them we get a response of the type Fp—OF ﬁJr ﬁ)
(18). We do not knowa priori the explicit analytical form of Plm, m,

the response. However, it can be written as a Taylor expan- . . _
sion[17] in the fieldF,. Therefore, in order to perform the ~ The expressiong25) and (26), give, when taken wittt
zero-field extrapolation, we adjust a polynom to our responséarge enough, the linear coefficients,g's. The limit

031201-4



SORET COEFFICIENT FOR LIQUID ARGON-KRYPTON . .. PHYSICAL REVIEW &5, 031201 (2002
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t
FIG. 1. Correlation functiorC,4(t) for the system 1(a) The FIG. 2. Correlation functiorCqq(t) for the system 1(a) The
plot of the whole function{b) the tail. plot of the whole function{b) the tail.

Fe—0 is usually performed either by choosing a very smallgator, adjoint of the time-evolution propagatd(t) acting
value of this field, or by extrapolating to zero field the re- on the phase-space variables. The out-of-equilibrium average

sponse values. _ of a flux can therefore be written as
There are two conceptually different ways to use expres-

sions(25) and (26). In one of then(19,2Q, one starts from

the well-known Liouville equation J(t)E<Jn>neq=f drf (150 7,(T)=(J,,U* (1)fo)
of
— SILOfTD), (27) =) J,.f0), (29
wherel is the phase-space vector dnitie phase-space dis- where 7,(I') is the phase-space function corresponding to
tribution function. The solution of Eq27) is the flux 7,,. Equation(29) is fundamental to approach non-
equilibrium statistical mechanics. It says that for systems ini-
f(C;t)=U*(1)f(T;0), (28) tially at equilibrium, nonequilibrium averages of an observ-

able can be obtained as averages of the observable, evoluted
with f(I";0) chosen to be the equilibrium phase-space distriin time under the full(perturbed dynamics, over the equi-
bution function. Formulg28) defines theU *(t) time propa- librium (initial-time) ensemble. The method based on Eq.

TABLE I. Conditions for the experiment@xpt) and simulationgsim., N=108) for the two thermody-
namical points studied. The molar fraction is denoted with,, and mass fraction withw,, «, ; p is the
mass density of the mixtur®, the pressure, and the temperature.

System P (atm) T (K) Nar Xar Wa, p (glen?) re re
1, expt. <3 95.2£2.4 0.6790 0.5020
1 sim. 1 95.2:0.1 73 0.6759 0.4985 1.8119 235 L/2
2 expt. <3 93.0+2.4 0.7840 0.6340
2 sim. 1 93.:0.2 85 0.7870 0.6379 1.6734 2.35 L/2
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0.0015 T T T T a) o0.00

0.0000 |- 7] -0.01

C
Lap

-0.0015 |- N -0.02

-0.0030 L . L . ooal— 1 A 1 A
0.

FIG. 3. Tail of the correlatiorC4(t) for the system 1, with two b) 000
different fits. ’

(29) is generally calledlynamical approactand can use any
type of time dependence of the external perturbation.

In contrast to this, thestationary approach1,21] uses
time averages over the stationary state, attained when one
chooses &-like perturbation in conjunction with a thermo-
stat which removes the dissipated heat. We stress that this -0.02 |-
approach only allows the calculation of the phenomenologi-
cal coefficient, without giving any information on the dy- - .
namical(transient-time behavior.

In the case oflynamical approachthe subtraction tech- -0.03

. . . . 0.0 1.0 2.0 3.0
nique[19] for noise reduction has been already proposed in t

-0.01

a) o1 FIG. 5. Integrals of the cross correlation functions for the sys-
tem 1.(a) L1o(t) andLq,(t) are plotted with their statistical errors,

. (b) L1g(t), Laa(t), as well asl , (t) =[L1q(t) + Lo1(t)1/2 with its
statistical error.

0.0

order to have a significant signal-to-noise ratio. However, it
is known that this technique is suitable only at short times.
—Cy® . For co_rrelation function showing enough long time memory,
—==-Cgy (1) the noise becomes as large as the natural fluctuation of the

measured current. Hence, the ratio of the measured current to
4 the corresponding excitation field, for large enough times,
diverges for small values of the field. We will see that this is
2.0 3.0 the situation encountered in our case.

Cus

01

-0.2

0.0

b) o.10 Ill. MODELS

We have studied two mixtures of argon-krypton atoms,
T with massesn;=39.944 andm,=83.80 a.u. TheN=108
particles system is enclosed in a cubic box of sidand
volume V=L3. The model for interactions is a Lennard-

Jones potential,
O'aﬁ 12 Uuﬁ 6
r r

with parameters €,,=119.8 kg, €5b=167.0kg, o011
=3.405 A, 0,,=3.633 A, and with cross parameters de-
fined by the Lorentz-Berthelot rules

0.06 |-

Cus

0.02 ~

} F(r)=4de,p

-0.02

0.0 3.0

FIG. 4. Cross correlations for the system 1, enserhblerl. (a) o1t 0
the full plot, (b) the plot in a reduced window with averages and UlzzTy
statistical errors.
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b) FIG. 8. The two cross coefficients; andL g, for system 1.
0.009 ' ' ' ' ' ' ' The vertical line shows the time window used to get the converged

1 time integrals in Ref[2].
— g Lo 2 '
0.006 It === [Blyq + 8lg,ISart(2) 1 ous way at the edge of the box. This is obtained by matching
a spline with a cubic line, such as to satisfy the conditions

PpP(ry)  PHh(ry)

= (303
ar? ar?
FIG. 6. The quantitiesL_=|L;g—Lg1//2 and Ls=(5Lq a)
+ 5LQ1)/J§ are plotted against the block numbgy, for two dif- 40 ’ ! ’ ! ’ !
ferent times:(a) att=0.72r, where the differencé& _ is the most
important,(b) at t=2.32r, where one finds the minimal difference
between the two cross coefficierisee Fig. 5. ok |
€12~ V€11€622. ng i )
20 =
Units are o4, for length, e; for energy, and r
=(mo3,/e1)Y? = 2.156 ps for time. All the quantities will S .
be quoted in such units, unless explicitly mentioned. To
avoid discontinuities in the integration of equations of mo- L e T —
tion, we modify the model so that the new potential function Fo
$*P gives pair force$Fia,jB| which go to zero in a continu-
b) o012 r , r T r T
0.008 |- -
a i T
0.004 - -
: 0.000 N | 1 1 1 1
0.0 50.0 100.0 150.0 200.0 0.0 20 4.0 6.0
ny Fo
FIG. 7. The quantity L, (t)=[Lyq(t)+Lq.(t)1/2 plotted FIG. 9. Direct responses to&like excitation of(a) heat andb)
against the block number. mass, for different perturbation strengths.
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a) 0.004 . , . , . , a) o002 . , . , .

-0.004 - 0.00 -
o ] e ]
o 1 [
-0.012 . -0.02 | i
-0.020 ) 1 L ] \ 1 -0.04
0.0 0.2 0.4 0.6 0.0 3.0
Fa
b) .01 ®) oes ' ! ' ! '
0.00 -
-0.02 -
EE
(<4 o B
(=)
-0.03 -
-0.03 -
-0.06
-0.04 1 1 1 1 1 1 0.0 1.0 2.0 3.0
0.0 2.0 4.0 6.0 t

FIG. 11. ResponseR;5 andRq; to a step function excitation
FIG. 10. Cross responses toddike excitation of(a) heat and  for several perturbation strengths.
(b) mass, for different perturbation strengths.
short time span of the observed stationary part of the dy-

Ip(ry) r%ff(rs) namical response of the system. _ _ _
= , (30b We tested our code by performing simulations on the sys-
ar or tem of PC, which is very close to that of ME. We found
results that agree well within the statistical error bars. Fur-
PRPP(ry) thermore, it is worth noting that this work presents results
— =0 (300  obtained by two independently developed co@esequential
o and a parallel one, running respectively on SGI or HP, and
Cray T3B which give the same results at any time of corre-
dpP(re)
T = 0, (30d) 6.0 T T

whererg is the radius where the Lennard-Jones potential is
cut, andr is the one where the spline ends. The potential
¢*P(r) is the integral over of the pair forcedp*A(r)/or
with the condition thaip*?(r)=0 for r=r.. Our boundary
conditions are periodic in all directions. We integrated the
equations of motiori17) using the velocity Verlet algorithm,
with a slight modification at the beginning of each NEMD
trajectory, due to the impulsive perturbation employed
[19,22. The time step is whenevdr=5 fs, unless other- . .

— velocity swapping
---- normal average J

; : ; 0.0
wise declared. We performed calculations both in NVE and 0.0 1.0 20 3.0
in NVT ensembles. For the latter we used the Nbs®ver t
thermostat whose inertia parame@+0.5 kJmol * ps” has FIG. 12. Two reponseRq, for a step function excitation with

been chosen following the procedure used in R&3]. That  strength out of the linear region. The two curves correspond to an
is, the value has been adjusted by trial and error, performingverage over 20 initial configurations. For one of the two curves,
a number of dynamical NEMD runs and choosing the largesive used 10 initial configurations and another 10 were created by
value consistent with a temperature control effective over theelocity inversion of the former ones.
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TABLE Il. Results for the GK simulations, systems 1 and 2. The total simulation time for each point is

60 ns.
State  Ens. Log 10L4q 10Los 10°L 1014y
1 NVT 3.37+0.09 —0.7620.48 —1.073:£0.48 —0.92=0.30 1.009-0.027
1 NVE 3.50£0.25 —1.37+0.50 —1.40=0.50 —1.39+0.31 1.0270.060
2 NVT 3.37£0.07 —0.76+0.42 —0.90+0.54 —0.83+0.30 0.98:0.016
2 NVE 3.33:0.08 —0.88+0.45 —0.80+0.45 —0.84+0.34 0.96@0.03
lation functions, up to the last significant digit. As stated in Sec. Il D, we can divide the NEMD tech-

The experimental conditions are those of REfs6], and are  niques into dynamical and stationary ones, that is into tech-
reported in Table | together with those of the simulations. Inniques that measure the transient responses and techniques
the experimental work cited, the pressure is not reported. Wehat measure the stationary response. We report, in the fol-
got the pressure value from J. C. Legros by private commulowing, results for both classes of techniques.

nication. We performed NPT simulations to prepare our
simulation system. In Table I, we also give the average den- . .
sity of the NPT simulations. A. Dynamical techniques

1. Green-Kubo

IV. RESULTS OF THE COMPUTATIONS We performed Green-Kubo calculations over a continuous
We report here the results of NEMD simulations. Othertrajectory, divided intan, =200 bIQCkS'. each of 300 pS. This
methods, e.g., boundary-driven NEMR1,24,28, were not corresponds to a total accumulation time of 60 ns; this length
possible in our case, since the liquid-vapor coexistence rel%n?irlcz);rlT:Czial?uulgttil(r)?]eslzl(;)rngT)rléréinst?t;tv% sﬁ]:égen?h?{"?]e
gion for argon and krypton is too close to the studied staté ' ;

. . b y L .
points, and therefore the mixture would undergo a Iohasgorrelatlon functions, th€,,4(t)’s, and their time integrals,

b )
transition when submitted to important temperature gradiiN€Leas(t)’s. We then calculate averages and standard errors

ents.
a) 0,005 Y T v T T
a) 45
- ] -0.005 | [ ]
a0l ] o 4 11 %—/i
- ] o Il ]
g [ ]
m R -
- i 0015}f ) 1
as}| . ’
i ] 0025L—— 1 L L L .
50 0 04 0.8 1.2
0 0.4 0.8 1.2 Fa
b
) 0.015 : T T T T b) o0z r T T T T
0.012 - 0.00 1 1 4
- 5 L | |
o< ] o l
0.009 - 0.02 ‘ -
0.006 L L L L . ~ L L
0.0 2.0 8.0 120 0045 ' 20 : 8.0 20
F, Fo

FIG. 13. Dynamical direct responses to a step function excita- FIG. 14. Dynamical cross responses to a step function excitation
tion as a function of the imposed field. System 1, constant densityas a function of the imposed field. System 1, constant density and
and temperature. temperature.
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TABLE lll. Phenomenological coefficients obtained by NEMD simulations, systems 1 and 2.

Syst. Method Log 10L4q 10PL gy 10°L 44
1 NEMD & 3.30+0.07 —0.96+0.50 —1.30+0.80 1.02:0.01
1 NEMD 6 dyn. 3.36:0.10 —0.99+0.19 —-1.0x1.0 0.99-0.06
1 NEMD ¢ stat 3.34-0.07 —1.00£0.17 —0.99+0.62 1.01:0.04
2 NEMD ¢ stat 3.310.07 —0.820.18 —0.89+0.58 0.97:0.03

on the whole set of block values, hence the correlation functherefore decided to use one Gf,(t) as the decay time of
tions C,4(t)’s and their time integralg ,4(t)’s, as all correlations. The functio,(t) does not show any evi-
] dence of at~%?2 long time tail behavior, as it is clear by
looking at Fig. 3. From this figure we also see that we can
_ b _
A= n_b bzl APt A=Copilagp- (3D consider the correlation function as decayed at times between
2.2 and 2.5; we take the decay timg~2.37. This value is

If one supposeshat the blocks give statistically indepen- more than two times larger than the one used in previous
dent values for the correlation functions, then the standar#vorks[2,4] on Ar-Kr mixture. As for the cross correlations,
error is given by the expression they are reported in Fig. 4, while in Fig. 5 we report their
integrals, together with the mean integral
1 nb 1/2
SAM ==y 2 AW -ADT . (32
b L. (t)=[Liq(t)+Lqi(t)]/2.

In Figs. 1 and 2 we report the direct correlation functions

C11(t) andCqq(t) for the system 1. We note th@t,(t) has . o .
not yet decayed up to2 For the cross correlation the cal- We stress that there is a significative difference between

culation of the decay time is obviously more difficult. We the two cross correlation functions even at short times. In

a) as T T T T T a) 0.002 T T T T T
4.2 . -0.006 |- -
8 I ¢ [ ]
@ _ o ¢ T
36 . 0014} =
3.0 0022 1 1 . 1 .
00 1.2 0.0 0.4 08 12
Fa
b) 0.014 b) 002 r T ' . .
0.012 . 0.00 |- .
' . & .
0.010 . 002} =
0.008 1 1 1 1 1 -0.04 N 1 1 | 1
0.0 4.0 8.0 120 0.0 40 8.0 120
Fy F,

FIG. 15. Stationary direct responses to a step function excitation FIG. 16. Stationary cross responses to a step function excitation
as a function of the imposed field. System 1, constant density ands a function of the imposed field. System 1, constant density and
temperature. temperature.
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TABLE IV. Simulation results, as averaged over all obtained valugth different methods systems 1

and 2.
Syst. Log 10L4q 10Lo; 10°L . 10°L 4
1 3.374:0.034 —1.016-0.099 —1.153+0.083 —1.084 0.083 1.01120.0063
2 3.340+0.030 —0.835-0.128  0.970%0.0142

particular, we notice that the difference between the twdimit with reasonable accuracy. This is shown, in our case, in
cross correlations is larger than the sum of the two correlapig. 8, where the calculateti;o(t) and Loy(t) for T:Q

tions’ errors divided b2, =0.01 andFp=0.2, respectively, are plotted. One clearly

sees the exponential divergence at long times. The vertical

Oligt ol line defines the time window used to get the converged time
J2 ' integrals in Ref.[2]. For such times, with the performed

statistics, the substraction technique still gives good accu-
as one can see from Fig. 6 for two different times. We recalftacy, but in our case the convergence has not yet been at-
that the two cross correlation functions must be equal. Weained. We conclude that, in our case, the subtraction tech-
therefore conclude that we do not estimate well the variancenique cannot be directly useful for such calculations.
that is the blocks are not statistically independent. To inteNevertheless, for short times, it gives a clear confirmation of
grate the previous analysis, we plotted against the block the Onsager reciprocal relations in the linear regime.
number, on Fig. 7. We see that the functiop has a slow Out of the linear regime, we expect to have an appreciable
convergence rate, and;q, Lo, are still a little different  improvement of the signal-to-noise ratio. We performed
after 200 blocks. Altogether these results indicate that th@imulations for several field values out of the linear region,

blocks are not yet long enough to be completely independe ta I~:Qe [0.1,0.§ and Epe[1,6]. We accumulated data

while their number should be further increased to have fu"over a total simulating time of 12 ns for each value of the

convergence. In any even.t, even so, we can cons@gr to haY%lds, therefore the total time for the whole set of points is
accumulated enough statistics to get reliable significant res5 < \ve have then integrated the response, and determined
sults. the plateau value of the integrals.

In Table Il the results for the phenomenological coeffi- The dynamical technique allows us to see the modifica-
cients are reported, for both NVT and NVE calculations an(é:,n

ILio—Loi>

f h th . . h ion of the correlation function’s form with the value of the
or both the studied state points. We stress that NVT an posed field. We report in the Appendix the study of the

NVE S|mu_lat|ons are in very good agreement with ea(_:hchange of this form as function of the imposed field strength.
other_. Besides the results in T_able I, th|s is seen comparingy, study also in the Appendix the validity of the ORR out of
the first parts of the correlation functions, which aré noty,g jinear region. This is seen as well in the converged inte-
noisy, with each other. grals, as in the remainder of this section.
All the responses converge between 2.0 ana.2/e took
a weighted average of the integrals’ values within this time
We performed NEMD simulations using the subtractionwindow, and plotted them against the imposed field
technique and the impulsive excitation, for the system Ar-Krstrengths, as in Figs. 9 and 10. A polynomial, weighted fit
1. In the linear regime, the responses are proportional tésee Sec. Il Dhas been performed, and the zero field limit of
correlation functions as in Eq&4), whose integrals are re- the responses has been determined. The obtained chi-squared
lated to phenomenological coefficients through E2pb).  values correspond to a probabilityo obtain such fits of
We found that the correlation functions converge only foraround 98% for all the fits. The results are in Table Ill. They
long times, i.e., at around 4-5 ps, as in the GK case. It i@re consistent with the Green-Kubo determinations. The er-
known[26] that, at these times, the exponential decorrelatiorrors on the cross coefficients are, however, large, in slight
between the equilibrium and nonequilibrium trajectoriescontrast to the previous situation. This means that the points
makes the subtraction technique unable to yield the zero fieldre not very well fitted by the imposed polynomial function.

2. Dynamical, impulsive NEMD

TABLE V. Experimental and simulation results for the mixture Ar-Kr, systems 1 and 2. The errors
correspond to two times the standard deviation. The total length of the simulatidn is

Syst. Method At 10N 10°D 10D+ 10°S;
(ns (W/K m) (m?/s) (mP/IKs) (1/K)
1 Sim. 335 1.03%0.022 1.3070.018 2.930.50 2.24-0.40
1 Expt. 2.78-0.66
2 Sim. 120 1.0670.018 1.33#0.019 2.77-0.54 2.07-0.69
2 Expt. 2.10-0.32
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FIG. 17. Comparison between experimef#$ and simulation b) o4

(this work), for two states of the Ar-Kr mixture. The values of the
simulation are calculated over all the results obtained by EMD and
NEMD and reported with two standard deviations error. They are at
the same argon mass fraction as the experiments, but have been
shifted in the plot for better readability.

-0.2

The Onsager reciprocity relations are verified in the linear 08

regime, but not out of this regime. This is clearly indicated
by looking at the progression of the two responses against
the field(Fig. 10: they have opposite trends. Note, however, 14

that, in the nonlinear region, the responses have not any

1.0 20 3.0

longer a direct physical meaning.

a) o025 T T r T y

0.15

Rﬁ

0.05

-0.058
0

b) o002

0.00

R11

-0.02

-0.04
0.0 1.0 20 3.0

FIG. 19. Direct response to&like heat perturbation for differ-
ent field strengthsi@ Short time responseb) tail response.

3. Dynamical, step-function NEMD

We performed simulations with the step-function excita-
tion (see Sec. Il D for different strengths, in and out of the
linear region. In the linear region, simulations proved how-
ever to give too noisy signals, so that it was impossible to
extract the converged values. This is not surprising, since we
are continuously disturbing the system, therefore this tech-
nique is even more noisy than thelike one. As for the
simulations out of the linear region, we did not use the sub-
traction technique, because here the response is much more
important than the signal at equilibrium, therefore, this tech-
nique would increase the statistical errar~opeqt oeg)
without improving the response. However, to get a neater
signal, we used the technique proposed by Eya6swhich
consists in the creation, for each equilibrium starting con-
figuration, of a configuration with opposite velocities; we
averaged on the entire set of responses obtained starting from
these two set of configurations. This gives a significative
reduction of the statistical noise, around a factor 2, as shown
in Fig. 12.

Despite this noise reduction technique, the cross reponses
at low (nonlineay fields prove still too much noisy to extract
a useful information. In Fig. 11 we plotted the cross reponses
for three different values of the external field, each coming
from a simulation of around 12 ns. The figure shows that it is
not possible to distinguish the convergence of the curves,

FIG. 18. Direct response to &like mass perturbation for dif- though the field values are already out of the linear region.
ferent field strengthga) Short time responséb) tail response. Moreover, for the heat reponse to a mass excitation, we have
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FIG. 20. Cross response togdike heat perturbation for differ- FIG. 21. Cross response tasdike mass perturbation for differ-
ent field strengths@ Short time responsé) tail response. ent field strengths(@ Short time responséb) tail response.

much more noise than with the other cross signal. This is ng®f this region, as it was the case for dynamidike NEMD
surprising, since the heat observable contains several diffefechnique. _ o S
ent variables as forces, velocities, positions and therefore un- The phenomenological coefficients’ determination is in
dergoes larger fluctuations. gooq agreement with GK, as seen comparing values in Table
However, if one increases the intensity of the excitation!! with those of Table II.
one begins to find neater responses. We went upde 1
andFp=10. It is possible to go besides these values, but our C. Comparison of simulation results with experiments
implementz_;\tion of the Nés_bloover thermostat would ask a In order to make a better comparison between the meth-
too small time step. On Figs. 13 and 14 we report the proggs e have performed an average over all the simulation
gression of the reponses as nonlinear functions of th_e applle&iames, calculating the variance by combining the various
field. In_TabIe [ there are the results qf the zero field ex-ygriances. This is correct for the system 1, because we have
trapolation of the integrated reponses, i.e., the phenomengyany different values for the coefficients. For system 2 much
logical coefficients. They are in good agreement with eachess individual responses were studied, thus we reported only
other and with the determinations from other methods. e statistics on direct coefficients, which we expect correct,
and for the coefficient& , as calculated from all the avail-
able cross coefficents’ values. The results are reported in
_ _ o o Table IV. Looking at the results obtained with the different
We performed simulations with-like excitation for sev-  techniques in the preceding sections, we can draw the fol-
eral field values, at the edge or out of the linear region, i.e.jowing conclusions.
Foe[0.1,1] andFpe[1,10]. We accumulated data over a (i) The results from GK and the different NEMD tech-
total simulation time of 12 ns for each value of the field, niques are in good agreement with each other. The direct
using the time steh=5 fs, apart for the strongest fields, for phenomenological coefficients of system 1 agree within 1%,
which it has been reduced to 2 fs. In Figs. 15 and 16 wavhile the more noisy cross coefficients agree within 10%, as
report the responses as functions of the imposed field togiven by standard deviations in Table IV. This agreement
gether with their best fits. For all the fits we had chi-squaredefers to a total simulation time of around 0/3s. For sys-
values that correspond to 99% of fit probability. tem 2, we have larger values of the variance, i.e., 15% for the
From the fits we see that the Onsager’s reciprocal relaeross coefficient . . This is due to the fact that we averaged
tions are verified in the linear region, while they are not outon fewer values and on a shorter simulation time, 049,

B. Stationary technique
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(ii) Both Green-Kubo and NEMD cross coefficients deter-simulations with experiments for the Soret coefficient is very
minations are found to have slower convergence than exgood and this suggests that the heat flux choice is correct.
pected when looking at previous works on the subjectThis is also confirmed by recent work on pentane-decane
[1,2,4); they have, however, comparable performances. Inmixture [27]. This comparison has been realized averaging
deed, for some NEMD determinations we have a signifi-on all our simulation datathat corresponds to around
cantly smaller error than for GK, but NEMD simulations 0.3 us of a continuous runto obtain the more reliable es-
have been carried on for a longer time. Moreover, one has timation of the transport coefficients.
take into account the time needed to create the iniégli-
librium) configurations. ACKNOWLEDGMENTS
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In Fig. 17 the coefficientsS; calculated by simulation APPENDIX
show a very good agreement with experimental data. In this appendix we study the dynamical responses to the
impulsive excitation described in Sec. IV A 2, as a function
V. CONCLUSION of the imposed field strength.

In thi ¢ d iibri q iib In Fig. 18 we see the form of the direct response to the
o n this paper we performed equilibrium and nonequilib- yaqq excitation. The initial value of this response does not
rium calculations in order to compute the Soret coefﬂmentch‘,;mge with the field, while the progression in time under-

for two state points of the _ar_gon-krypton m'XtW_e’_eXpe”'goes important modifications. This means that in the expan-
mentally measured. As statistical errors in equilibrium GK g, 23)

simulations are independent of the system $24, a very
small system(108 particles was chosen in order to compare _ > 4 6
the effigiency of GpK and NEMD calculations. P Rap()= Lap(D) TDap()FetCap(t)Fetdap(Fe,
The matrix of phenomenological coefficients has been ob- a,8=10Q
tained by various techniques which differ in the us&oénd
0-like excitations in the linear and nonlinear regime, assumwe haveb,,(0)=0,c,,(0)=0,d11(0)=0. This is not the case
ing the ideal mixture approximation for the heat flux. We of the direct response to a heat excitation, shown in Fig. 19.
found that the linear dynamical NEMiperformed through The change arises from the very beginning and already at
subtraction techniquecannot be used in our case, and inshort times (-0.37) one sees a negative peak appearing. We
general when the response does not decay within ps, interpret this as the response of the system to a very strong
because of the exponential divergence of trajectories. Noné-like excitation, i.e., to a perturbation that induces a “large”
linear dynamical and stationary NEMD, for which we useddisplacement of particles and therefore a transient, induced,
0-like and &-like perturbations, give reliable results in good negative heat flux. This is not the case ®y;, since the
agreement with each other. However, in spite of the longnterdiffusive flux is just controled by the perturbation, and
total simulation time for each techniq@@0—-100 ng impor-  the thermostat easily removes the produced heat.
tant statistical errors are fouritom 17% to 50%, in con- As for the cross responses, on Fig. 20 one can see that due
trast with previous works on the subject. We had also theo the heat excitation. Again in this case, where we measure
occasion to study the validity of Onsager reciprocal relationsa mass flux, we note that in the above expanskm(t)
out of the linear regime. We found that the cross responses 0,c,4(t)=0,d,o(t)=0 at very short times. For low fields
are not any longer equal in this regime. we have one first negative peak, a second one is positive and
We confirmed our NEMD results by comparison with then the correlation function goes to zero from positive val-
Green-Kubo calculations, that we carried on during a trajecues. As the field increases, we note that the first negative
tory of 60 ns. As a result of this long simulation, we found apeak becomes less deep and that a third negative peak arises.
very slow convergence for both cross coefficients, which ar®©n Fig. 21, we reported the cross response to a mass excita-
hence determined with modest accura@round 30% tion. The situation is opposed with respect to the other cross
Green-Kubo calculations give performances comparable teesponse, for the first negative peak, that is the peak becomes
the NEMD ones. deeper as the imposed field increases. We can conclude that
A comparison between simulations and experiments hathe two cross responses, out of the linear region, are very
been attempted. The common enthalpy-diffusion-free expreddifferent and hence the Onsager reciprocity relations for
sion for the heat flux has been chosen. The comparison of théese responses are not valid.

031201-14



SORET COEFFICIENT FOR LIQUID ARGON-KRYPTON . .. PHYSICAL REVIEW &5, 031201 (2002

[1] D. MacGowan and D.J. Evans, Phys. Rev34 2133(1986); equilibrium Liquids(Academic Press, New York, 1990
36, 948(1987. [17] B.L. Holian and D.J. Evans, J. Chem. Phg8, 3560(1985.

[2] G.V. Paolini and G. Ciccotti, Phys. Rev. 3%, 5156(1987. [18] P.J. Daivis and D.J. Evans, Chem. Phi88 25 (1995.

[3] P. Sindzingre, G. Ciccotti, C. Massobrio, and D. Frenkel,[19] G. Ciccotti, G. Jacucci, and I.R. McDonald, J. Stat. Pijis.1
Chem. Phys. Lett136, 35(1987). (1979.

[4] R. Vogelsang, C. Hoheisel, G. Paolini, and G. Ciccotti, Phys.[20] G. Ciccotti, C. Pierleoni, and J. Ryckaert, Microscopic
Rev. A36, 3964(1987. Simulation of Complex Hydrodynamic Phenomeesited by

[5] D. Longree, J. Legros, and G. Thomaes, J. Phys. Chéd. M. Marechal and B. HoliariPlenum Press, New York, 1992
3480(1980. [21] W.G. Hoover and W.T. Ashurst, iltheoretical Chemistry: Ad-

[6] D. Longree, these de doctorat, Universiteibre de Bruxelles,
1979.

[7] S. de Groot and P. MazuNon-Equilibrium Thermodynamics
(Dover, New York, 1984

[8] S. de Groot, Ph.D. thesis, Amsterdam, 1945.

[9] W.W. Wood, J. Stat. Phy&7, 675(1989.

[10] J. Irwing and J. Kirkwood, J. Chem. Phyk3, 817 (1950.

vances and Perspectivesdited by H. Eyring and D. Hender-
son (Academic Press, New York, 19¥5/0l. 1, pp. 1-51.

[22] C. Massobrio and G. Ciccotti, Phys. Rev.3Q, 3191(1984.

[23] M. Ferrario, G. Ciccotti, B.L. Holian, and J.P. Ryckaert, Phys.
Rev. A44, 6936(199)).

[24] A. Tenenbaum, G. Ciccotti, and R. Gallico, Phys. Re\2%\

[11] D.J. Evans and P.T. Cummings, Mol. Phyg, 893 (1991. 2778(1982). _

[12] S. Sarman and D.J. Evans, PhyS Rew_%z:g?o(lgga [25] B. HafSijld and S.K. Ratkje, J. Stat. Phyﬁ, 463 (1995

[13] S. Sarman and D.J. Evans, Phys. ReviéA 1960 (1992. [26] J.-P. Ryckaert, A. Bellemans, G. Ciccotti, and G. Paolini, Phys.
[14] R. Zwanzig, J. Chem. Phyd0, 2527 (1964. Rev. A39, 259(1989.

[15] D.J. Evans, Phys. Lett. 1A, 457 (1982. [27] A. Perronace, C. Leppla, F. Leroy, B. Rousseau, and S. Wie-
[16] D.J. Evans and G.P. MorrisStatistical Mechanics of Non- gand, J. Chem. Phy416 3718(2002.

031201-15



